

by

Shizuo Mizushina and Mohammad Madihian

The Research Institute of Electronics
Shizuoka University

3-5-1 Johoku, Hamamatsu 432, Japan

Summary

Powers from a total of up to 120 Gunn diodes were combined at 23 GHz by combining three or five or seven 12- or 24-device Kurokawa oscillators through short-slot couplers in conjunction with high-level injection locking. Overall power combining efficiencies were 76-91 percent.

and hence, Δf_1 is small. Subsequently, the oscillators 4 and 5 are brought into operation and are adjusted similarly, and so on. This technique has been successfully applied to multiple-device oscillators to increase the total number of devices combined.

Introduction

It has been shown possible to combine, say, up to 30-40 devices at X-band frequencies^{1,2} by the single-cavity multiple-device techniques of Kurokawa-Magalhaes³ and of Harp-Stover.⁴ Powers from several units of these multiple-device oscillators can be combined further by appropriate methods to increase the total number of devices combined.^{5,6,7} This paper presents results of an experiment on combining powers from up to 120 K-band Gunn diodes by combining three or five or seven 12- or 24-device Kurokawa oscillators through 3-dB short-slot couplers in conjunction with high-level injection locking.

Principles of Operation

Fig.1 illustrates the combiner network that combines $2N+1$ oscillators with N short-slot couplers to deliver a combined power, P_c , to a matched waveguide load at a frequency, f_c , where the couplers are indicated by the heavy lines. All the oscillators are designed and built to generate their maximum powers at f_c when operated into the matched waveguide load individually.

The combiner can be adjusted to operate at a desired frequency, f_c , as follows:

First, operate the oscillator 1 alone at $f_1 = f_c + \Delta f_1$ with $\Delta f_1 = +5 \sim +10$ MHz. Second, operate the oscillators 1 through 3 and tune the oscillators 2 and 3 to make the power at the output port of the combiner maximum while keeping frequency-locked conditions maintained. When the tuning is made properly as described in Ref.5, the oscillator 2(3) reflects almost all of the injected power, $P_1/2$, and generates its maximum power, $P_2(P_3)$, simultaneously. The sum of $(P_1/2 + P_2)$ and $(P_1/2 + P_3)$ is obtained at the output port of the first stage coupler. A small unbalanced power is injected back into the oscillator 1,

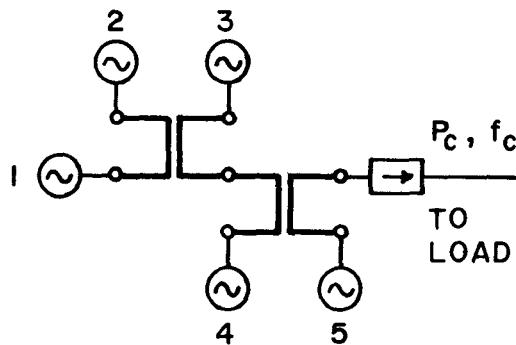


Fig.1. The $(2N+1)$ -oscillator combining network with $N=2$.

Experiments

Ten 12-device Kurokawa oscillators were built using K-band GaAs Gunn diodes (New Japan Radio Co.) and used in our experiments. The diodes were tested in a post-mount waveguide ($10.7 \text{ mm} \times 4.3 \text{ mm}$) cavity and grouped into three groups according to their optimum dc-bias voltages: 4.5, 5.0, 5.5 volts. The maximum output power from a single diode was 4 to 6 mW with an average at about 5 mW. From each group, diodes were taken in dozens and mounted in Kurokawa waveguide ($10.7 \text{ mm} \times 4.3 \text{ mm}$) cavity combiners. Positions of diodes and non-tapered stabilizing absorbers with respect to the waveguide cavity were adjusted and then proper output windows were selected for the maximum power, 48-72 mW, at 23.30 GHz. Power combining efficiencies at this combining stage, defined by the ratio of combined power and sum of individual diode maximum powers, were 90-93 percent. 24-device oscillators were also constructed by simply stacking pairs of the pre-adjusted 12-device oscillator modules and selecting proper output windows. The oscillation frequency was tunable over a 300-MHz range by means of a tuning screw in the waveguide cavity.

Three or five or seven ($2N+1$) of these multiple (M)-device oscillators were combined

through N short-slot couplers as shown in Fig.1. Results are summarized in Table 1 and in Fig.2, where $M \times (2N+1) = 36, 60, 72, 84, 120$ diodes were combined at about 23 GHz. As described earlier, P_c approaches the sum of maximum powers from individual oscillators when tuned properly.

Table 1. Results of power combining experiments at 23 GHz using 12- and 24-Gunn-diode Kurokawa oscillators.

Exp. No.	Total No. of Diodes Combined	$M \times (2N+1)$	f_c GHz	P_c mW	η %
1	36	12×3	23.46*	160	89
2	36	12×3	23.30	193	107 **
3	60	12×5	23.31	242	81
4	72	24×3	23.32	323	90
5	84	12×7	23.30	382	91
6	84	12×7	23.30	362	86
7	120	24×5	23.47*	451	76
8	120	24×5	23.32	486	81

* Oscillators were adjusted for the maximum power at 23.45 GHz.

** Larger power oscillators were used.

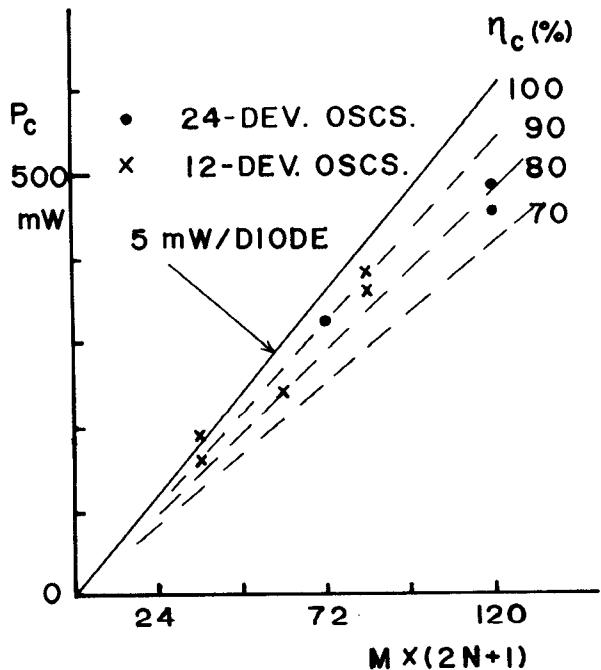


Fig.2. Combined power versus total number of diodes combined at about 23 GHz. Output power from individual diodes was about 5 mW on average.

The solid-line in Fig.2 corresponds to 5-mW per diode and can be interpreted as a

100-percent overall power combining efficiency line, roughly speaking. The 120-diode combiner, where all the diodes were biased by a common power supply, produced 486 mW at 23.32 GHz with an 81-percent overall combining efficiency. We have not tried to combine the diodes above 120 so far, but it appeared quite possible to extend the number to a 150-200 range.

Tuning characteristics of the 36-device combiner of Exp.1 in Table 1 were measured and results are presented in Fig.3. In this measurement, the combiner was first adjusted for the maximum power, $P_{co} = 160$ mW, at $f_{co} = 23.46$ GHz, and then the oscillator 1 alone was tuned to tune f_c . The combined power, P_c , is given as a function of the frequency difference, $\Delta f_c = f_c - f_{co}$, in Fig.3.

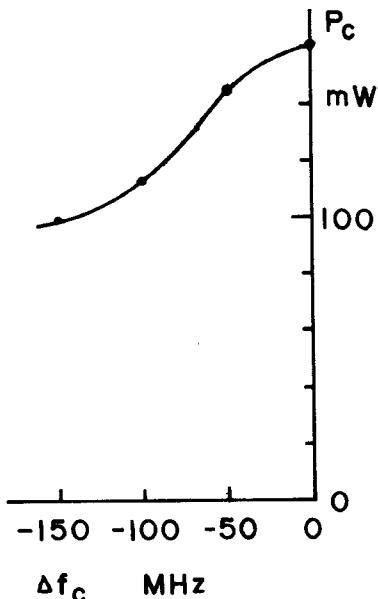


Fig.3. Tuning characteristics of the 36-device combiner of Exp.1 in Table 1.

Dependence of combiner operation on the dc-bias voltage was also measured on the same combiner. Results are represented by the P_c and f_c versus bias-voltage curves in Fig.4. Operation of all the combiners was found stable over a certain range of bias voltage when circuit adjustments were made properly.

Pulsed operation of the combiners was also found possible. An RF spectrum obtained from another $12 \times 3 = 36$ -diode combiner operating under pulsed and primed conditions is shown in Fig.5. Conditions of the operation were: bias-voltage pulse height=6.5 volts, pulse width=2 μ s, duty ratio=10 percent, frequency=23.29 GHz, peak output power=325 mW, CW priming power=1.3 mW.

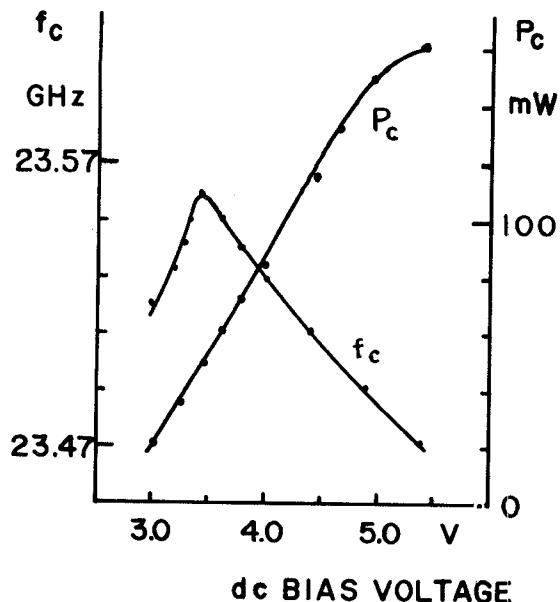


Fig.4. Combined power, P_c , and frequency, f_c , versus dc-bias voltage for the 36-device combiner of Exp.1 in Table1.

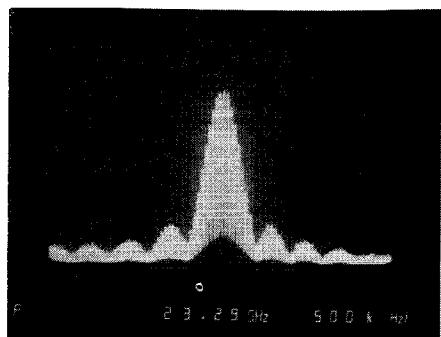


Fig.5. An RF spectrum of a $12 \times 3 = 36$ -device combiner.
 Pulse width: 2 μ s. Duty ratio: 10 %. Peak output power: 325 mW.
 CW priming power: 1.3 mW.
 Frequency: 23.29 GHz.
 Bias voltage pulse height: 6.5 V.

Conclusions

The $(2N+1)$ -oscillator combining technique has been successfully applied to combine powers from several units of the single-cavity multiple-Gunn-diode oscillator of Kurokawa type to increase the total number of devices combined up to 120 at about 23 GHz. It appears quite possible to extend the number to a 150-200 range. The present technique will be readily applicable to other devices such as IMPATT as well as to other types of oscillators such as of Harp-Stover. Of particular interest for future works is application of the present method to millimeter waves.

Acknowledgment

The authors thank Dr. C. Shibata and Dr. C. Kimura of New Japan Radio Co. for supplying the Gunn diodes used in the experiments.

References

1. S.E.Hamilton,"32 diode waveguide power combiner," 1980 IEEE MTT-S Int. Microwave Symposium Digest, pp.183-185.
2. K.J.Russell,"Microwave power combining techniques," IEEE Trans. Microwave Theory Tech., vol.MTT-27, pp.472-478, May 1979.
3. K.Kurokawa and F.M.Magalhaes,"An X-band 10-W multiple-diode oscillator," Proc. IEEE, vol.-59, pp.102-103, Jan.1970.
4. R.S.Harp and H.L.Stover,"Power combining of X-band IMPATT circuit modules," 1973 IEEE Int. Solid-State Circuit Conf. Digest, pp.118-119.
5. S.Mizushina,H.Kondoh and M.Ashiki,"A corporate and tandem structures for combining power from 3^N and $2N+1$ oscillators," IEEE Trans. Microwave Theory Tech., vol.MTT-28, pp.1428-1432, Dec. 1980.
6. Y.Ma,C.Sun and E.M.Nakaji,"V-band high-power IMPATT amplifier," 1980 IEEE Int. Microwave Symposium Digest, pp.73-74.
7. H.J.Kunc,"Solid state millimeter-wave power sources and combiners," Microwave Journal, vol.24, No.6, p.21, June 1981.